In Vivo Tracking of EGFP-Labeled Mesenchymal Stem Cells Through Live Animal Imaging

How to Cite

Fabin. (2020). In Vivo Tracking of EGFP-Labeled Mesenchymal Stem Cells Through Live Animal Imaging. American Journal of Translational Medicine, 4(4), 205–215. Retrieved from


Cell therapy transplants living cells into target tissues or injury sites, inducing therapeutic effects in diseased tissues or organs. In order to determine the survival and differentiation of transplanted stem cells in vivo and improve their therapeutic efficacy, we developed a non-invasive labeling technique to track transplanted mesenchymal stem cells in living animals. In this study, we used electroporation to transfect the pCMVEGFP (enhanced green fluorescent protein) plasmid into human cells, generating EGFP-labelled umbilical cord-derived mesenchymal stem cells (UC-MSCs) in vitro. The EGFP-labeled UC-MSCs were then subcutaneously injected into nude mice and were tracked for 5 weeks using the IVIS live animal imaging system. We found that the EGFP transfection efficiency reached 81% in EGFP-labeled UC-MSCs. In vivo imaging analysis showed that the EGFP-labeled cells retained strong fluorescence expression for 7 days and then gradually decreased over time. However, an immunohistochemistry analysis indicated that transplanted cells could survive for more than 6 months in vivo. In conclusion, EGFP-labeling is a valuable technique for tracking the survival and migration of transplanted stem cells in vivo, leading to new understandings of the molecular mechanisms of cell therapy. (Am J Transl Med 2020. 4:205-215).



Brennan K, Shen. S. (2018). Mechanisms of Telomere

Maintenance in iPSCs and their Possible Implications on

the Characterisation a Cell Line. American Journal of

Translational Medicine, 2(4), 153-159.

Chen, J., Sai, S. Y., Vazin, T., Coggiano, M., & Freed, W.

J. (2009). Human embryonic stem cells which express

hrGFP in the undifferentiated state and during

dopaminergic differentiation. Restor Neurol Neurosci,

(4), 359-370.

Cui, X., Chen, L., Xue, T., Yu, J., Liu, J., Ji, Y., & Cheng,

L. (2015). Human umbilical cord and dental pulp-derived

mesenchymal stem cells: biological characteristics and

potential roles in vitro and in vivo. Mol Med Rep, 11(5),


Han F. (2012). The applications of the induced pluripotent

stem cells in studying the neurodegenerative diseases.

Chinese Journal of Cell Biology, 34(5), 6.

Han, F., Liu, C., Huang, J., Chen, J., Wei, C., Geng, X., . . .

Li, M. (2019). The application of patient-derived induced

pluripotent stem cells for modeling and treatment of

Alzheimer’s disease. Brain Science Advances, 5(1), 21-40.


Han, F., Wang, W., Chen, B., Chen, C., Li, S., Lu, X., . . .

Li, G. (2015). Human induced pluripotent stem cellderived

neurons improve motor asymmetry in a 6-

hydroxydopamine-induced rat model of Parkinson's

disease. Cytotherapy, 17(5), 665-679.

Higuchi, Y., Wu, C., Chang, K. L., Irie, K., Kawakami, S.,

Yamashita, F., & Hashida, M. (2011). Polyamidoamine

dendrimer-conjugated quantum dots for efficient labeling

of primary cultured mesenchymal stem cells. Biomaterials,

(28), 6676-6682.

Kao, C. Y., & Papoutsakis, E. T. (2018). Engineering

human megakaryocytic microparticles for targeted

delivery of nucleic acids to hematopoietic stem and

progenitor cells. Sci Adv, 4(11), eaau6762.

Kim, J. E., Kalimuthu, S., & Ahn, B. C. (2015). In vivo cell

tracking with bioluminescence imaging. Nucl Med Mol

Imaging, 49(1), 3-10.

Mao, Y., Yan, R., Li, A., Zhang, Y., Li, J., Du, H., . . . Li,

H. (2015). Lentiviral Vectors Mediate Long-Term and

High Efficiency Transgene Expression in HEK 293T cells.

Int J Med Sci, 12(5), 407-415.

Miller, S., Kennedy, D., Thomson, J., Han, F., Smith, R.,

Ing, N., . . . Busbee, D. (2000). A rapid and sensitive

reporter gene that uses green fluorescent protein

expression to detect chemicals with estrogenic activity.

Toxicol Sci, 55(1), 69-77.

Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane,

A., Okamoto, S., . . . Yamanaka, S. (2011). A more efficient

method to generate integration-free human iPS cells. Nat

Methods, 8(5), 409-412.

Pinyon, J. L., Klugmann, M., Lovell, N. H., & Housley, G.

D. (2019). Dual-Plasmid Bionic Array-Directed Gene

Electrotransfer in HEK293 Cells and Cochlear

Mesenchymal Cells Probes Transgene Expression and Cell

Fate. Hum Gene Ther, 30(2), 211-224.

Tao, R., Sun, T. J., Han, Y. Q., Xu, G., Liu, J., & Han, Y. F.

(2014). Optimization of in vitro cell labeling methods for

human umbilical cord-derived mesenchymal stem cells.

Eur Rev Med Pharmacol Sci, 18(8), 1127-1134.

Wilson, K., Yu, J., Lee, A., & Wu, J. C. (2008). In vitro and

in vivo bioluminescence reporter gene imaging of human

embryonic stem cells. J Vis Exp(14). doi:10.3791/740

Wu, Y., Cao, Y., Li, X., Xu, L., Wang, Z., Liu, P., . . . Han,

Z. (2014). Cotransplantation of haploidentical

hematopoietic and umbilical cord mesenchymal stem cells

for severe aplastic anemia: successful engraftment and

mild GVHD. Stem Cell Res, 12(1), 132-138.

Yamano, T., Iguchi, H., & Fukuzawa, H. (2013). Rapid

transformation of Chlamydomonas reinhardtii without

cell-wall removal. J Biosci Bioeng, 115(6), 691-694.

Yazdanyar, A., Zhang, P., Dolf, C., Smit-McBride, Z., Cary,

W., Nolta, J. A., . . . Park, S. S. (2020). Effects of

intravitreal injection of human CD34(+) bone marrow

stem cells in a murine model of diabetic retinopathy. Exp

Eye Res, 190, 107865.

Zhang, N., Chen, B., Wang, W., Chen, C., Kang, J., Deng,

S. Q., . . . Han, F. (2016). Isolation, characterization and

multi-lineage differentiation of stem cells from human

exfoliated deciduous teeth. Mol Med Rep, 14(1), 95-102.

Zhang, N., Lu, X., Wu, S., Li, X., Duan, J., Chen, C., . . .

Han, F. (2018). Intrastriatal transplantation of stem cells

from human exfoliated deciduous teeth reduces motor

defects in Parkinsonian rats. Cytotherapy, 20(5), 670-686.

Zhang, S., Zhang, W., Li, Y., Ren, L., Deng, H., Yin, X., . . .

Niu, Y. (2020). Human Umbilical Cord Mesenchymal

Stem Cell Differentiation Into Odontoblast-Like Cells and

Endothelial Cells: A Potential Cell Source for Dental Pulp

Tissue Engineering. Front Physiol, 11, 593.

Zhao, Y., Bower, A. J., Graf, B. W., Boppart, M. D., &

Boppart, S. A. (2013). Imaging and tracking of bone

marrow-derived immune and stem cells. Methods Mol

Biol, 1052, 57-76.